
904 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL. 43, NO 4, APRIL 1995

A Recursive Algorithm for Analysis of Planar

Multiple Lines on Composite Substrates for

M(H)MIC’S and High-Speed Interconnects
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Abstract-A simple recursive algorithm is presented based on the meth-

od of fines for the analysis of multilayered mnltiple microstrip lines

or slots. Our previously proposed scheme of vertical mnlti-snbregion

space dkcretization [1] is used to enhance the numerical accnracy. The
recursive formulation is extended to model composite substrates which

is aimed at reducing the unwanted coupling among different lines in
M(H)MIC’S and high-speed interconnects. Numerical resnlts are shown

for both quasistatic and hybrid-mode analyses. Resnlts of mnltiple strips
on a composite uniaxial anisotropic substrate are also presented. (&r*
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1. INTRODUCTION

There have been a number of documented works [2]–[7] on the

analysis of multiple strips which have found widespread applications

in various microwave integrated circuits (MIC’ s), monolithic MIC’S,

VLSI and MMIC interconnects. Nevertheless, the analysis methods

become more complicated with a larger number of coupled strips.

On the other hand, it is known that the field coupling or cross-talk

as well as pulse distortion in high speed interconnects [2], [3] can be

reduced through hollow segments between adjacent strips. Therefore,

it is of both theoretical and practical importance to have both hybrid-

mode and quasistatic methods which are able to promise accurate

electromagnetic modeling of these complex structures in a simple

and efficient way.

In our previous paper [1], a novel and efficient approach based

on the method of lines [8]–[ 10] has been proposed to model single

micro strip line on multilayered composite substrates with different

segments. It is able to handle not only very narrow strips/very large

slots topologies or vice versa but also simulate exactly bilaterally

unbounded structures. In the following, this approach will be extended

to model multiple strips or slots. To do so, field potentials are

transfemed from one strip to another and matched on the last

one. This recursive procedure makes the algorithm very simple,

flexible and easy to handle for a large class of complex planar

composite structures. At the same time. the efficiency of the numerical

calculation is enhanced significantly. It is especially convenient for

various practical situations in which the number as well as the width

of the strips are frequently modified from one calculation to another.

In addition, it preserves all the advantages described in our previous

paper [1]. This novel recursive algorithm is demonstrated through

both quasistatic and hybrid-mode analyses for multiple coupled strips

with hollow segments including uniaxial anisotropic substrates.
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Fig. 1. Illustration of a bilaterally unbounded multiconductor planar trans-
mission line deposited on a segmented multilayered substrate.

and segmented dielectric substrate. For simplicity, it is assumed that

the structure is lossless and the thickness of strips is zero. Since

analytical formulations of this approach have been well detailed in

[1], our attention will be focused on those theoretical aspects related

to multiple strip cases. The key point of the analysis is to derive the

basic recursive formulation of the field potentials from one strip to

another. The extension of this technique to structures with multiple

slots is straightforward and will not be included for brevity.

A. Quasi-Static Analysis

The whole structure is divided into subregions I, II, III,. . . and so

on as shown in Fig. 1. The subregions are partitioned by vertical lines,

incorporating either planar strips or vertical boundaries of different

dielectric layers or both. The metallic strips thus become boundaries

of additional subregions along the vertical direction for some related

subregions, the subregion III is divided into III’ and III” and so

on (to name an example). As illustrated in Fig. 1, inhomogeneous

layers along the z-direction are involved, Therefore, for the uniaxial

anisotropic case, the electrical characteristics governed by the Laplace

equation in terms of the electrical potential ~ can be expressed as

II. THEORY

The analysis model is shown in Fig. 1 where multiple coupled

microstrip lines are deposited on a bilaterally unbounded composite
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where S. and : ~ are dielectric permittivities along the z and g axis,

respectively. As usual, the potential @ is discretized and diagonalized

using the appropriate transform matrix T [1], [8], [10] in each subre-

gion. Subsequently, two different kinds of recursive formulations will

be considered. One is related to subregions involving the metallic
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Fig. 2. Dependence of the capacitance matrix on the normalized height of

the segmented layer t1 of a three-conductor micro strip line with ~, I = 9.8,

C,Z = 2.3, and WI = 0.6, uz = 0.8, 51 = 0.6, 52 = 0.8, h = I, d = 4,
tl+ tz= h/2 (unit: mm).

strip, such as the regions III’, III”, V’, V“,. . . in Fig. 1, and the

remaining of the whole structure is subject to the other. For the first

one. the subregion 111 (which is divided into 111’ and 111”) is taken

as an example. The matrix relationship between potential Y and its

derivative is known at the left boundary (y = w2), which can be

expressed in the general form as follows:

[3T’’’’’[:::)1+B‘2)
where IIA II and ~ are the coefficient matrix and the coefficient vector

[1], respectively. The transformed Laplace equation in subregions III’

and III” becomes inhomogeneous due to the fact that the potential

on the strip is not equal to zero. Solving inhomogeneous equations

and transforming them back to the original domain lead to a hybrid

relationship of the potentials and their derivatives between the left

and right boundaries [1]

.
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Det)endence of the capacitance matrix on the normalized height of the
segmented layer tl of the uniaxial anisotropic substrate for a four-conductor
mlcrostrip line with :7J = 11.6, Svl = 9.4, E,2 = 3.4 EV2 = $lZ and
w = 1, LYz = 1.2, W3 = 0.6, u,.I = 0.8, SI = 0.8, sz = 0.6, S3 =0.4, h =
1, d = 4, fl + fz = h/2 (unit: mm).

where

and uo k supposed to be the potential on the metallic strip in

subregion III. Eliminating d~( YZ)/du and ;( U2)yields

[1~‘$ IIf(U3)

‘?’111”(Y3 )

(5

(4)
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with

P“A]IIQII = 11-411+ ~

In this way, the same relationship as (2) between the potential and its

derivative is obtained at g = g3 but with a different coefficient matrix

IIFll and coefficient vector @. Note that the order of the vectors

&I(y), ~flI(V)’s ‘qual ‘0 ‘1, n z, respectively. These orders are

detemnined by the number of discretized lines in the subregions III’

and III”. Hence, /l F/l and l\Ql\ are (nl + rm) X (nl -E m) matriceS.

A similar mathematical process in the subregion IV is demonstrated

as an example for the situation without metallic strips. In this case, the

transformed Laplacc equation is homogeneous from which we obtain

(5)

which is similar to (3) except that uo, @ and ~ are all equal to zero

and that this subregion is not split as in the former case since there

is no strip embedded in this subregion. The relationship between the

potential and its derivative at the left boundary y = ys is known as

(4). To obtain the potential transfer function at the right boundary

g = y~, the matrices a and ~ have to be split into submatrices as

11711=

Through

obtained

[ ?lZxl
““xn’ ?32Y3 i

#;x.2 1 I
n~xn

%1

some matrix manipulations, another transfer function is

(7)

where n(n = nl + nz + 1) is the total number of lines in the

subregion IV and 7L0 = n — 1

and

with

@TZI x n)

1

~j~l x?~)

= ,,R,, (-l) X(T-l)

C$2xn) [14;2xn)

11~11= (11~11+ 11-/’11)‘land Ilq’11 = ~3~
?131;/3 3

The relationship between the potential and its derivative of the first

subregion I and the last subregion iV with the unbounded transverse

section is readily obtained [1]. Such a recursive formulation may

start from the subregion 1, transferred from one strip to another,

end up with the subregion iV through the similar equations as (4)

and (6) but in the relevant subregion. The deterministic matrix can

be obtained at the boundary Y.V, which is readily solved for the

2~~—-J——J———J
10 20 30 40 50 60

frequency (GHz)

Fig. 4. Calculated dispersion characteristics of different modes for a
four-couductor microstrip line with U,I = 0.6, w? = 0.4, SI = 04, S2 =
0.5, h = 1, d = 4, (unit: mm) :,1 = 9.8, and =,2 = 4.

potential vector ~(yjv) and relevant quantities. Subsequently, the

potential vectors at each boundary ~(y, ) (i = 1,2 . . . lV– 1) may

be obtained by a reverse transfer. The charge distributions at each

strip are then calculated together with the capacitance matrix of the

strips [1]. Through this recursive algorithm, it can be seen that the

dimension of the characteristic matrix remains always the same for

arbitrary number of strips. This is a remarkable advantage over the

conventional method of lines.

B. Hybrid-Mode Analysis

The procedure used in the hybrid-mode analysis is quite similar

to the quasistatic case except the handling of subregions involving

metallic strips. Electromagnetic potentials ~’ (LSM-.n) and @}’ (LSE-

.r) are governed by the Helmholtz and Sturm–Liouville differential

equations [1]. [8]–[ 10]. After discretization and transformation in the

space domain, the ratio of the transformed electric and magnetic

potentials and their derivatives at interface y = y, can be expressed

through the same ratio at y = g,–1. The tangential electric and

magnetic fields can be obtained from Maxwell equations in the

transformed domain at all interfaces. This has been detailed in [1],

[8], [9]. After transforming back to the original domain, a field matrix

relating magnetic field quantities to their electric counterparts can be

derived at gl. Similar to the quasistatic analysis, this matrix is then

transferred along the y-direction to the interfaces, yz, y3 . . . yN and

we have

HJ-l I,N = UN-I .E,V–l IYN. (9)

It should be pointed out that, in the transferring process through the

subregions containing strips, the two complementary transfer matrices

of each pair of subregions should be combined such as III’ and III”,

V’, and V“ . . . etc. into one single matrix, respectively. This implies

a complete point matching of field components in the discrete space

domain.
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Ontheother hand, asimiktrf ieldmatrix~r,v may be obtained for

the subregion iv which tends to infinity together with y -+ w

(lo)

Matching the tangential field components of subregions llT – 1 and

ilr at y = yN, a characteristic matrix is obtained and frequency-

dependent propagation constants and related field parameters can be

found by solving this determinant equation.

C. Numerical Resaits

To validate the proposed recursive algorithm, the characteristic

impedance of even and odd modes of a coupled microstrip line

is calculated by using the quasistatic modeling, showing a good

agreement with [11 ]. Fig. 2 shows the capacitance matrix of a three-

conductor microstrip line. Fig. 3 displays the capacitance matrix of a

four-conductor microstrip line deposited on a segmented multilayer

uniaxial anisotropic substrate. A typical CPU time is 5 min. for the

calculation of this figure on a low-speed HP-400 workstation. The

limiting line spacing used is around 300/mm. The calculated results

change significantly with the normalized height of the segmented

layer tl. It is interesting that the self-capacitances cl 1. C!!~, and f2’3~

tend to equal each other when the thickness tlapproaches zero and

their values diversify as tl becomes large. This can be explained

by the fact that when t] + O, the coupling between the different

strips increases drastically and the coupling effect makes CM and C44

increase faster than cl 1 since the dimension .93 is much less than s 1.

As the thickness tl increases, the coupling effect diminishes and the

difference between the self-capacitance become more pronounced.

Dispersion characteristics of a coupled microstrip line are also

calculated. Fig. 3 shows dispersion characteristics of different modes

of a microstrip line with four conductors on a segmented multilayered

substrate.

III. CONCLUSION

This paper presents a recursive algorithm of the method of lines

based on the vertical discretization [1] for the analysis of multiple

strips or slots on composite multilayered substrates including uni-

axial anisotropic materials. The advantage of this algorithm is that

modeling on arbitrary multiple lines (or slots) is accomplished by a

simple transferring process of the “standard” field matrices from one

strip (or slot) to another. An additional identified advantage compared

to the conventional method of lines is that the order of characteristic

matrix remains always the same regardless of the number of strips

or slots. This is more pronounced when a large number of strips or

slots gets revolved such as in high-speed interconnects. Our examples

demonstrate potential application to a large class of planar circuits

including complex composite substrates with hollow segments which

were proposed to reduce the field coupling between different strips.

REFERENCES

[1] K. WU, Y. Xu, and R. G. Bosisio, “A technique for efficient analysis
of planar integrated microwave circuits including segmented layers and
miniature topologies,” IEEE Trcau Microwave Theory Tech.. vol. 42.
pp. 826–833, May 1994.

[2] J. P K. Gilb and C. A. Balanis, “Asymmetric, multi-conductor low-

coupling structures for high-speed. high-density digital interconnects,”
IEEE Trans. Micrmvave Theory Tech., vol. 39, pp. 2100–2106. Dec.

1991.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

G. Ghione, L Miao, and G. Vecchi, “Modeling of multiconductor buses
and analysis of crosstalk, propagation delay and pulse distortion in high-

speed GaAs logic circuits,” IEEE Trans. Microwave Theory Tech., vol,

37, pp.445-456, Mar. 1989.
W. D. Becker, P.H. Harms, and R. Mittra, “Time-domamelectromag-
netic analysis of interconnects in a computer chip package.” IEEE Trans.

Microwave Theory Tech., vol. 40, pp.2155-2163. Dec. 1992.
C. Wei, R. F. Barrington, J. R. Mautz, and T. K. Sarkar, “Multiconductor

transmission lines in multilayered media,” IEEE Trans. Microwave
Theory Tech., vol. MTT-32, pp.437-449, Apr. 1984.
J. J. Yang. G. E. Howard, and Y. L. Chow, “A simple technique for
calculating the propagation dispersion of multiconductor transmission
lines in mrsltilayer dielectric media,” IEEE Trans. k’~crowuve Theory
Tech., vol. 40, pp. 622–627, Apr. 1992.
V. K. Tripathi and H. Lee, “Spectral domain computation of characteris-

tic impedances and multiport parameters of multiple coupled microstrip
lines,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 2 15–221, Jan.

1989.

K. Wu and R. Vahldieck, “Comprehensive MoL analysis of a class

of semiconductor-based transmission lines suitable for microwave and
optoelectronic application,” Int. J. Num. A40delmg, vol. 4, pp. 45–62,

1991.

K. Wrs, R. Vahldieck, J, Flkartand H. Minkus, “’The urfluenceoffinite
conductor thickness and conductivity on fundamental and higher-order
modes in Miniature Hybrid MIC’S (MHMIC’S) and MMIC’S,” IEEE
Trans. Mtcrowa\,e Theory Tech., vol. 41, pp.421-430, Mar. 1993
R. Pregla and W. Pascher, “The method of lines,” in Narnerical
Techniques for Microwave andkfillimeter Wave Pa.wive Structures. T.
Itoh, Ed. New York Wiley, 1989, pp. 381446.

R. K. Hoffmann, Handbook oflficrow,ave Integrated Circaits. Nor-
wood, MA: Artech House, 1987.

The

Abstract-The microwave approximation for the propagation constant

Propagation Constant of a Lossy Coaxial

Line with a Thick Outer Conductor

W. C. Daywitt

. .
of a coaxial line becomes inaccurate below 1 MHz. An approximation is
presented that is accnrate over the entire operating freqnency range of

the line.

1. INTRODIJCTION

The propagation constant y for the principal, transverse magnetic

mode on a lossy coaxial line has been known for many years [1] and

appears in the field equations with the form

F = Foe’dL–” (1)

where F represents any one of the principal mode field components,

w the radian frequency, t the time, and z the axial distance along

the line.

An exact calculation of y is complicated by the need to solve

the coaxial line determinantal equation involving Bessel functions of

the first and second kinds with complex arguments. Furthermore, the

only approximation for ~ in common usage today is that originally

derived by Stratton [1], a first-order perturbation equation in the
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