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A Recursive Algorithm for Analysis of Planar
Multiple Lines on Composite Substrates for
MH)MIC’s and High-Speed Interconnects

Yansheng Xu, Ke Wu, and Renato G. Bosisio

Abstract—A simple recursive algorithm is presented based on the meth-
od of lines for the analysis of multilayered multiple microstrip lines
or slots. Our previously proposed scheme of vertical multi-subregion
space discretization [1] is used to enhance the numerical accuracy. The
recursive formulation is extended to model composite substrates which
is aimed at reducing the unwanted coupling among different lines in
ME)MIC’s and high-speed interconnects. Numerical results are shown
for both quasistatic and hybrid-mode analyses. Results of multiple strips
on a composite uniaxial anisotropic substrate are also presented.

I. INTRODUCTION

There have been a number of documented works [2]-[7] on the
analysis of multiple strips which have found widespread applications
in various microwave integrated circuits (MIC's), monolithic MIC’s,
VLSI and MMIC interconnects. Nevertheless, the analysis methods
become more complicated with a larger number of coupled strips.
On the other hand, it is known that the field coupling or cross-talk
as well as pulse distortion in high speed interconnects [2], [3] can be
reduced through hollow segments between adjacent strips. Therefore,
it is of both theoretical and practical importance to have both hybrid-
mode and quasistatic methods which are able to promise accurate
electromagnetic modeling of these complex structures in a simple
and efficient way.

In our previous paper [1], a novel and efficient approach based
on the method of lines [8]-[10] has been proposed to model single
microstrip line on multilayered composite substrates with different
segments. It is able to handle not only very narrow strips/very large
slots topologies or vice versa but also simulate exactly bilaterally
unbounded structures. In the following. this approach will be extended
to model multiple strips or slots. To do so, field potentials are
transferred from one strip to another and matched on the last
one. This recursive procedure makes the algorithm very simple,
flexible and easy to handle for a large class of complex planar
composite structures. At the same time, the efficiency of the numerical
calculation is enhanced significantly. It is especially convenient for
various practical situations in which the number as well as the width
of the strips are frequently modified from one calculation to another.
In addition, it preserves all the advantages described in our previous
paper [1]. This novel recursive algorithm is demonstrated through
both quasistatic and hybrid-mode analyses for multiple coupled strips
with hollow segments including uniaxial anisotropic substrates.

II. THEORY

The analysis model is shown in Fig. 1 where multiple coupled
microstrip lines are deposited on a bilaterally unbounded composite
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Fig. 1. Illustration of a bilaterally unbounded multiconductor planar trans-
mission line deposited on a segmented multilayered substrate.

and segmented dielectric substrate. For simplicity, it is assumed that
the structure is lossless and the thickness of strips is zero. Since
analytical formulations of this approach have been well detailed in
[1], our attention will be focused on those theoretical aspects related
to multiple strip cases. The key point of the analysis is to derive the
basic recursive formulation of the field potentials from one strip to
another. The extension of this technique to structures with multiple
slots is straightforward and will not be included for brevity.

A. Quasi-Static Analysis

The whole structure is divided into subregions I, II, IIL,. . . and so
on as shown in Fig. 1. The subregions are partitioned by vertical lines,
incorporating either planar strips or vertical boundaries of different
dielectric layers or both. The metallic strips thus become boundaries
of additional subregions along the vertical direction for some related
subregions, the subregion III is divided into III' and IIT” and so
on (to name an example). As illustrated in Fig. 1, inhomogeneous
layers along the xz-direction are involved. Therefore, for the uniaxial
anisotropic case, the electrical characteristics governed by the Laplace
equation in terms of the electrical potential ¢ can be expressed as

8 (. oy %
%(”a‘f) *

T
where €, and =, are dielectric permittivities along the x and y axis,
respectively. As usual, the potential + is discretized and diagonalized
using the appropriate transform matrix 7" [1], [8], [10] in each subre-
gion. Subsequently, two different kinds of recursive formulations will
be considered. One is related to subregions involving the metallic

1
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Fig. 2. Dependence of the capacitance matrix on the normalized height of

the segmented layer t1 of a three-conductor microstrip line with £,; = 9.8,
g0 =23, and w1 = 0.6, wo = 0.8, sy = 06,50 =08, h =1,d =4,
t1 + t3 = /2 (unit: mm).

strip, such as the regions III', II”’, V', V”,... in Fig. 1, and the
remaining of the whole structure is subject to the other. For the first
one. the subregion III (which is divided into III' and II1") is taken
as an example. The matrix relationship between potential ¢ and its
derivative is known at the left boundary (y = y2), which can be
expressed in the general form as follows:

dlgnél(yﬁ i (y2)

y - =

. =|l401] _ +B @
% ¢’IH” (UQ)

where [|A|| and B are the coefficient matrix and the coefficient vector
[11, respectively. The transformed Laplace equation in subregions III'
and IIT" becomes inhomogeneous due to the fact that the potential
on the strip is not equal to zero. Solving inhomogeneous equations
and transforming them back to the original domain lead to a hybrid
relationship of the potentials and their derivatives between the left
and right boundaries [1]
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Fig. 3. Dependence of the capacitance matrix on the normalized height of the
segmented layer t; of the uniaxial anisotropic substrate for a four-conductor
mucrostrip line with £,1 = 11.6, ¢y1 = 9.4, €,2 = 3.4, gy2 = 5.12, and
wy =1, wy = 1.2, wy = 0.6, wy = 0.8, 57 = 0.8, 5o = 0.6, 53 =04, h =
1, d = 4, t1 +to = h/2 (unit: mm).
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and wg is supposed to be the potential on the metallic strip in
subregion III. Eliminating dv(yz)/dy and v (yz)yields
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with

yir 0

oIl = 4] + [ e 0 }
In this way, the same relationship as (2) between the potential and its
derivative is obtained at y = y3 but with a different coefficient matrix
||| and coefficient vector G. Note that the order of the vectors
vin(y), J{'Il(y) is equal to ni, ny, respectively. These orders are
determined by the number of discretized lines in the subregions III'
and 1T". Hence, || F'}| and ||@|| are (n1 + n2) X (n1 + na) matrices.

A similar mathematical process in the subregion I'V is demonstrated
as an example for the situation without metallic strips. In this case, the
transformed Laplace equation is homogeneous from which we obtain

di(y3) n

O . [—7 “} #lue) (5
dif(y4) L e

dy4 U(ys)

which is similar to (3) except that ug, F and § are all equal to zero
and that this subregion is not split as in the former case since there
is no strip embedded in this subregion. The relationship between the
potential and its derivative at the left boundary y = y3 is known as
(4). To obtain the potential transfer function at the right boundary
¥ = Y4, the matrices o« and v have to be split into submatrices as

T Xy gy X1 nyXng nyXn
Y11 Y12 Y13 ay
_ 1Xng 1x1 AXny _ IxXn
(vl = | 72t Y22 Yo3 and [lafl = | ag ()
noXny ng X1 2 Xngy naXn
31 732 V33 i

Through some matrix manipulations, another transfer function is
obtained
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where n(n = ni1 + np + 1) is the total number of lines in the
subregion IV and 7o = n — 1
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The relationship between the potential and its derivative of the first
subregion I and the last subregion N with the unbounded transverse
section is readily obtained [1]. Such a recursive formulation may
start from the subregion I, transferred from one strip to another,
end up with the subregion N through the similar equations as (4)
and (6) but in the relevant subregion. The deterministic matrix can
be obtained at the boundary yw, which is readily solved for the
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Fig. 4. Calculated dispersion characteristics of different modes for a
four-conductor microstrip line with wy; = 0.6, w2 = 0.4, s1 = 04, 52 =
05, h =1,d =4, (unit: mm) &;; = 9.8, and 0 = 4.

potential vector z,/_;(yN) and relevant quantities. Subsequently, the
potential vectors at each boundary J( y,) (0 = 1,2 -+ N—1) may
be obtained by a reverse transfer. The charge distributions at each
strip are then calculated together with the capacitance matrix of the
strips [1]. Through this recursive algorithm, it can be seen that the
dimension of the characteristic matrix remains always the same for
arbitrary number of strips. This is a remarkable advantage over the
conventional method of lines.

B. Hybrid-Mode Analysis

The procedure used in the hybrid-mode analysis is quite similar
to the quasistatic case except the handling of subregions involving
metallic strips. Electromagnetic potentials ¢ (LSM-z) and 4" (LSE-
z) are governed by the Helmholtz and Sturm-—Liouville differential
equations [1]. [8]-{10]. After discretization and transformation in the
space domain, the ratio of the transformed electric and magnetic
potentials and their derivatives at interface y = y, can be expressed
through the same ratio at ¥ = y,-1. The tangential electric and
magnpetic fields can be obtained from Maxwell equations in the
transformed domain at all interfaces. This has been detailed in [1],
[8]. [9]. After transforming back to the original domain, a field matrix
relating magnetic field quantities to their electric counterparts can be
derived at y;. Similar to the quasistatic analysis, this matrix is then
transferred along the y-direction to the interfaces, y2,v3 -+ -y~ and
we have

Hy ilyy =Un-1- En—al, - ©)

It should be pointed out that, in the transferring process through the
subregions containing strips, the two complementary transfer matrices
of each pair of subregions should be combined such as ITI' and III",
V', and V" ... etc. into one single matrix, respectively. This implies
a complete point matching of field components in the discrete space
domain.
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On the other hand, a similar field matrix Uy may be obtained for
the subregion N which tends to infinity together with y — oc
Hylyy =Uy-Enl, . (10)

Matching the tangential field components of subregions N — 1 and
‘N at ¥y = yn. a characteristic matrix is obtained and frequency-

dependent propagation constants and related field parameters can be
found by solving this determinant equation.

C. Numerical Results

To validate the proposed recursive algorithm, the characteristic
impedance of even and odd modes of a coupled microstrip line
is calculated by using the quasistatic modeling, showing a good
agreement with [11]. Fig. 2 shows the capacitance matrix of a three-
conductor microstrip line. Fig. 3 displays the capacitance matrix of a
four-conductor microstrip line deposited on a segmented multilayer
uniaxial anisotropic substrate. A typical CPU time is 5 min. for the
calculation of this figure on a low-speed HP-400 workstation. The
limiting line spacing used is around 300/mm. The calculated results
change significantly with the normalized height of the segmented
layer t1. It is interesting that the self-capacitances C11. Claq, and Cs
tend to equal each other when the thickness #; approaches zero and
their values diversify as #; becomes large. This can be explained
by the fact that when ¢; — 0, the coupling between the different
strips increases drastically and the coupling effect makes C33 and Clyy
increase faster than C'1; since the dimension s3 is much less than s;.
As the thickness ¢1 increases, the coupling effect diminishes and the
difference between the self-capacitance become more pronounced.

Dispersion characteristics of a coupled microstrip line are also
calculated. Fig. 3 shows dispersion characteristics of different modes
of a microstrip line with four conductors on a segmented multilayered
substrate.

TIT. CONCLUSION

This paper presents a recursive algorithm of the method of lines
based on the vertical discretization [1] for the analysis of multiple
strips or slots on composite multilayered substrates including uni-
axial anisotropic materials. The advantage of this algorithm is that
modeling on arbitrary multiple lines (or slots) is accomplished by a
simple transferring process of the “standard” field matrices from one
strip (or slot) to another. An additional identified advantage compared
to the conventional method of lines is that the order of characteristic
matrix remains always the same regardless of the number of strips
or slots. This is more pronounced when a large number of strips or
slots gets mvolved such as in high-speed interconnects. Our examples
demonstrate potential application to a large class of planar circuits
including complex composite substrates with hollow segments which
were proposed to reduce the field coupling between different strips.
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Nor-

The Propagation Constant of a Lossy Coaxial
Line with a Thick Outer Conductor

W. C. Daywitt

Abstract—The microwave approximation for the propagation constant
of a coaxial line becomes inaccurate below 1 MHz. An approximation is
presented that is accurate over the entire operating frequency range of
the line.

1. INTRODUCTION

The propagation constant ~ for the principal, transverse magnetic
mode on a lossy coaxial line has been known for many years [1] and
appears in the field equations with the form

F = Fge'~'™° (D

where F represents any one of the principal mode field components,
w the radian frequency, ¢ the time, and z the axial distance along
the line.

An exact calculation of ~ is complicated by the need to solve
the coaxial line determinantal equation involving Bessel functions of
the first and second kinds with complex arguments. Furthermore, the
only approximation for 4 in common usage today is that originally
derived by Stratton [1], a first-order perturbation equation in the
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